Speedup of kernel eigenvoice speaker adaptation by embedded kernel PCA
نویسندگان
چکیده
Recently, we proposed an improvement to the eigenvoice (EV) speaker adaptation called kernel eigenvoice (KEV) speaker adaptation. In KEV adaptation, eigenvoices are computed using kernel PCA, and a new speaker’s adapted model is implicitly computed in the kernel-induced feature space. Due to many online kernel evaluations, both adaptation and subsequent recognition of KEV adaptation are slower than EV adaptation. In this paper, we eliminate all online kernel computations by finding an approximate pre-image of the implicit adapted model found by KEV adaptation. Furthermore, the two steps of finding the implicit adapted model and its approximate pre-image are integrated by embedding the kernel PCA procedure in our new embedded kernel eigenvoice (eKEV) speaker adaptation method. When tested in an TIDIGITS task with less than 10s of adaptation speech, eKEV adaptation obtained a speedup of 6–14 times in adaptation and 136 times in recognition over KEV adaptation with 12–13% relative improvement in recognition accuracy.
منابع مشابه
Eigenvoice Speaker Adaptation via Composite Kernel Principal Component Analysis
Eigenvoice speaker adaptation has been shown to be effective when only a small amount of adaptation data is available. At the heart of the method is principal component analysis (PCA) employed to find the most important eigenvoices. In this paper, we postulate that nonlinear PCA, in particular kernel PCA, may be even more effective. One major challenge is to map the feature-space eigenvoices ba...
متن کاملEigenvoice Speaker Adaptation via Composite Kernel PCA
Eigenvoice speaker adaptation has been shown to be effective when only a small amount of adaptation data is available. At the heart of the method is principal component analysis (PCA) employed to find the most important eigenvoices. In this paper, we postulate that nonlinear PCA, in particular kernel PCA, may be even more effective. One major challenge is to map the feature-space eigenvoices ba...
متن کاملA comparative study of two kernel eigenspace-based speaker adaptation methods on large vocabulary continuous speech recognition
Eigenvoice (EV) speaker adaptation has been shown effective for fast speaker adaptation when the amount of adaptation data is scarce. In the past two years, we have been investigating the application of kernel methods to improve EV speaker adaptation by exploiting possible nonlinearity in the speaker space, and two methods were proposed: embedded kernel eigenvoice (eKEV) and kernel eigenspace-b...
متن کاملRobustness of several kernel-based fast adaptation methods on noisy LVCSR
We have been investigating the use of kernel methods to improve conventional linear adaptation algorithms for fast adaptation, when there are less than 10s of adaptation speech. On clean speech, we had shown that our new kernel-based adaptation methods, namely, embedded kernel eigenvoice (eKEV) and kernel eigenspace-based MLLR (KEMLLR) outperformed their linear counterparts. In this paper, we s...
متن کاملImproving eigenspace-based MLLR adaptation by kernel PCA
Eigenspace-based MLLR (EMLLR) adaptation has been shown effective for fast speaker adaptation. It applies the basic idea of eigenvoice adaptation, and derives a small set of eigenmatrices using principal component analysis (PCA). The MLLR adaptation transformation of a new speaker is then a linear combination of the eigenmatrices. In this paper, we investigate the use of kernel PCA to find the ...
متن کامل